Existence of Non-subnormal Polynomially Hyponormal Operators
نویسندگان
چکیده
In 1950, P. R. Halmos, motivated in part by the successful development of the theory of normal operators, introduced the notions of subnormality and hyponormality for (bounded) Hilbert space operators. An operator T is subnormal if it is the restriction of a normal operator to an invariant subspace; T is hyponormal if T*T > TT*. It is a simple matrix calculation to verify that subnormality implies hyponormality, but the converse is false. One reason is that subnormality is invariant under polynomial calculus (indeed, analytic functional calculus), while hyponormality is not. If one then defines T to be polynomially hyponormal when p(T) is hyponormal for every polynomial p e C[z], the following question arises naturally.
منابع مشابه
Polynomially hyponormal operators
A survey of the theory of k-hyponormal operators starts with the construction of a polynomially hyponormal operator which is not subnormal. This is achieved via a natural dictionary between positive functionals on specific convex cones of polynomials and linear bounded operators acting on a Hilbert space, with a distinguished cyclic vector. The class of unilateral weighted shifts provides an op...
متن کاملJointly Hyponormal Pairs of Commuting Subnormal Operators Need Not Be Jointly Subnormal
We construct three different families of commuting pairs of subnormal operators, jointly hyponormal but not admitting commuting normal extensions. Each such family can be used to answer in the negative a 1988 conjecture of R. Curto, P. Muhly and J. Xia. We also obtain a sufficient condition under which joint hyponormality does imply joint subnormality.
متن کاملThe Lifting Problem for Hyponormal Pairs of Commuting Subnormal Operators
We construct three different families of commuting pairs of subnormal operators, jointly hyponormal but not admitting commuting normal extensions. Each such family can be used to answer in the negative a 1988 conjecture of RC, P. Muhly and J. Xia. We also obtain a sufficient condition under which joint hyponormality does imply joint subnormality. Our tools include the use of 2-variable weighted...
متن کاملHyponormal Operators with Rank-two Self-commutators
In this paper it is shown that if T ∈ L(H) satisfies (i) T is a pure hyponormal operator; (ii) [T ∗, T ] is of rank-two; and (iii) ker [T ∗, T ] is invariant for T , then T is either a subnormal operator or the Putinar’s matricial model of rank two. More precisely, if T |ker [T∗,T ] has the rank-one self-commutator then T is subnormal and if instead T |ker [T∗,T ] has the ranktwo self-commutato...
متن کاملPropagation Phenomena for Hyponormal 2-variable Weighted Shifts
We study the class of hyponormal 2-variable weighted shifts with two consecutive equal weights in the weight sequence of one of the coordinate operators. We show that under natural assumptions on the coordinate operators, the presence of consecutive equal weights leads to horizontal or vertical flatness, in a way that resembles the situation for 1-variable weighted shifts. In 1variable, it is w...
متن کامل